Ultrafilter selection properties

(joint work with Robert Bonnet and Stevo Todorčević)

Wiesław Kubiś

Academy of Sciences of the Czech Republic and Jan Kochanowski University in Kielce, Poland http://www.math.cas.cz/kubis/

Winter School in Abstract Analysis, Hejnice 2014 25 January – 1 February 2014

< 回 > < 回 > < 回 >

Let \mathbb{B} be a Boolean algebra, $\kappa \leq |\mathbb{B}|$ an infinite cardinal. We say that \mathbb{B} has the κ -selection property if for every generating set $G \subseteq \mathbb{B}$ there exists an ultrafilter p on \mathbb{B} such that

 $|\mathbf{p} \cap \mathbf{G}| \ge \kappa.$

We say that \mathbb{B} is κ -Corson if it fails the κ -selection property.

Definition

A Boolean algebra \mathbb{B} has the strong κ -selection property if for every generating set $G \subseteq \mathbb{B}$ the set

 $\{ p \in \mathsf{Ult}(\mathbb{B}) \colon | p \cap G| \geqslant \kappa \}$

has nonempty interior.

Let \mathbb{B} be a Boolean algebra, $\kappa \leq |\mathbb{B}|$ an infinite cardinal. We say that \mathbb{B} has the κ -selection property if for every generating set $G \subseteq \mathbb{B}$ there exists an ultrafilter p on \mathbb{B} such that

 $|\mathbf{p} \cap \mathbf{G}| \ge \kappa.$

We say that \mathbb{B} is κ -Corson if it fails the κ -selection property.

Definition

A Boolean algebra \mathbb{B} has the strong κ -selection property if for every generating set $G \subseteq \mathbb{B}$ the set

```
\{ p \in \mathsf{Ult}(\mathbb{B}) \colon | p \cap G| \ge \kappa \}
```

has nonempty interior.

Let \mathbb{B} be a Boolean algebra, $\kappa \leq |\mathbb{B}|$ an infinite cardinal. We say that \mathbb{B} has the κ -selection property if for every generating set $G \subseteq \mathbb{B}$ there exists an ultrafilter p on \mathbb{B} such that

 $|\mathbf{p} \cap \mathbf{G}| \ge \kappa.$

We say that \mathbb{B} is κ -Corson if it fails the κ -selection property.

Definition

A Boolean algebra \mathbb{B} has the strong κ -selection property if for every generating set $G \subseteq \mathbb{B}$ the set

 $\{ p \in \mathsf{Ult}(\mathbb{B}) \colon | p \cap G| \ge \kappa \}$

has nonempty interior.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fact

 \mathbb{B} has the \aleph_0 -selection property $\implies \mathbb{B}$ is superatomic.

э

Inspirations:

Banach space theory and Corson compact spaces

Interval Boolean algebras

Inspirations:

- Banach space theory and Corson compact spaces
- Interval Boolean algebras

An interval Boolean algebra is a Boolean algebra generated by a linearly ordered set. Given a chain C, denote by $\mathbb{B}(C)$ the Boolean algebra generated by C.

Definition

A hereditarily interval algebra is a Boolean algebra whose all subalgebras are interval.

Open problem (R. Bonnet)

Find an uncountable hereditarily interval algebra.

イロト イヨト イヨト イヨト

An interval Boolean algebra is a Boolean algebra generated by a linearly ordered set. Given a chain C, denote by $\mathbb{B}(C)$ the Boolean algebra generated by C.

Definition

A hereditarily interval algebra is a Boolean algebra whose all subalgebras are interval.

Open problem (R. Bonnet)

Find an uncountable hereditarily interval algebra.

An interval Boolean algebra is a Boolean algebra generated by a linearly ordered set. Given a chain C, denote by $\mathbb{B}(C)$ the Boolean algebra generated by C.

Definition

A hereditarily interval algebra is a Boolean algebra whose all subalgebras are interval.

Open problem (R. Bonnet)

Find an uncountable hereditarily interval algebra.

Every hereditarily interval algebra is of the form $\mathbb{B}(C)$, where $C \subseteq \mathbb{R}$.

Proof.

Assume $\mathbb{B} = \mathbb{B}(C)$, where C is a chain.

- Neither ω_1 nor its inverse embed into *C*.
- ② There is an uncountable set *G* ⊆ *C* such that $|p \cap G| \leq \aleph_0$ for every $p \in Ult(\mathbb{B})$.
- Image B(G) is an uncountable interval algebra which fails the ℵ₁-selection property.
- A contradiction (see one of the next slides).

Every hereditarily interval algebra is of the form $\mathbb{B}(C)$, where $C \subseteq \mathbb{R}$.

Proof.

Assume $\mathbb{B} = \mathbb{B}(C)$, where *C* is a chain.

- **1** Neither ω_1 nor its inverse embed into *C*.
- ② There is an uncountable set $G \subseteq C$ such that $|p \cap G| \leq \aleph_0$ for every *p* ∈ Ult(\mathbb{B}).
- ③ B(G) is an uncountable interval algebra which fails the ℵ₁-selection property.
- A contradiction (see one of the next slides).

Every hereditarily interval algebra is of the form $\mathbb{B}(C)$, where $C \subseteq \mathbb{R}$.

Proof.

Assume $\mathbb{B} = \mathbb{B}(C)$, where *C* is a chain.

- Neither ω_1 nor its inverse embed into *C*.
- ② There is an uncountable set G ⊆ C such that |p ∩ G| ≤ ℵ₀ for every p ∈ Ult(𝔅).
- ③ B(G) is an uncountable interval algebra which fails the ℵ₁-selection property.
- A contradiction (see one of the next slides).

Every hereditarily interval algebra is of the form $\mathbb{B}(C)$, where $C \subseteq \mathbb{R}$.

Proof.

Assume $\mathbb{B} = \mathbb{B}(C)$, where C is a chain.

- Neither ω_1 nor its inverse embed into *C*.
- ② There is an uncountable set $G \subseteq C$ such that $|p \cap G| \leq \aleph_0$ for every *p* ∈ Ult(\mathbb{B}).
- Image B(G) is an uncountable interval algebra which fails the ℵ₁-selection property.
- A contradiction (see one of the next slides).

Every hereditarily interval algebra is of the form $\mathbb{B}(C)$, where $C \subseteq \mathbb{R}$.

Proof.

Assume $\mathbb{B} = \mathbb{B}(C)$, where C is a chain.

- Neither ω_1 nor its inverse embed into *C*.
- 2 There is an uncountable set G ⊆ C such that |p ∩ G| ≤ ℵ₀ for every p ∈ Ult(𝔅).
- **3** $\mathbb{B}(G)$ is an uncountable interval algebra which fails the \aleph_1 -selection property.
 - A contradiction (see one of the next slides).

イロト イヨト イヨト イヨト

Every hereditarily interval algebra is of the form $\mathbb{B}(C)$, where $C \subseteq \mathbb{R}$.

Proof.

Assume $\mathbb{B} = \mathbb{B}(C)$, where C is a chain.

- Neither ω_1 nor its inverse embed into *C*.
- ② There is an uncountable set $G \subseteq C$ such that $|p \cap G| \leq \aleph_0$ for every *p* ∈ Ult(\mathbb{B}).
- **3** $\mathbb{B}(G)$ is an uncountable interval algebra which fails the \aleph_1 -selection property.
- A contradiction (see one of the next slides).

Theorem (Nikiel, Purisch, Treybig independently: Bonnet, Rubin)

 $\mathbb{B}(\mathbb{R})$ is not hereditarily interval.

A poset algebra is a Boolean algebra \mathbb{B} generated freely by a partially ordered set *P*. That is:

$$p_1 \wedge \ldots \wedge p_k \wedge \neg q_1 \wedge \ldots \wedge \neg q_\ell = 0 \implies (\exists i, j) \ p_i \leqslant q_j$$

for every $p_1, \ldots, p_k, q_1, \ldots, q_\ell$ in *P*. We write $\mathbb{B} = \mathbb{B}(P)$.

Fact

Every interval algebra is a poset algebra.

A poset algebra is a Boolean algebra \mathbb{B} generated freely by a partially ordered set *P*. That is:

$$p_1 \wedge \ldots \wedge p_k \wedge \neg q_1 \wedge \ldots \wedge \neg q_\ell = 0 \implies (\exists i, j) \ p_i \leqslant q_j$$

for every $p_1, \ldots, p_k, q_1, \ldots, q_\ell$ in *P*. We write $\mathbb{B} = \mathbb{B}(P)$.

Fact

Every interval algebra is a poset algebra.

Main results

Theorem

Let \mathbb{B} be a poset Boolean algebra, let κ be a regular cardinal such that $\aleph_0 < \kappa \leq |\mathbb{B}|$. Then \mathbb{B} has the κ -selection property.

Theorem

Let \mathbb{B} be an interval Boolean algebra, $\aleph_0 < \lambda^+ < |\mathbb{B}|$. Then \mathbb{B} has the strong λ^+ -selection property.

Example

Let κ be any infinite cardinal. Then the free Boolean algebra with κ generators fails the strong \aleph_0 -selection property.

Main results

Theorem

Let \mathbb{B} be a poset Boolean algebra, let κ be a regular cardinal such that $\aleph_0 < \kappa \leq |\mathbb{B}|$. Then \mathbb{B} has the κ -selection property.

Theorem

Let \mathbb{B} be an interval Boolean algebra, $\aleph_0 < \lambda^+ < |\mathbb{B}|$. Then \mathbb{B} has the strong λ^+ -selection property.

Example

Let κ be any infinite cardinal. Then the free Boolean algebra with κ generators fails the strong \aleph_0 -selection property.

Main results

Theorem

Let \mathbb{B} be a poset Boolean algebra, let κ be a regular cardinal such that $\aleph_0 < \kappa \leq |\mathbb{B}|$. Then \mathbb{B} has the κ -selection property.

Theorem

Let \mathbb{B} be an interval Boolean algebra, $\aleph_0 < \lambda^+ < |\mathbb{B}|$. Then \mathbb{B} has the strong λ^+ -selection property.

Example

Let κ be any infinite cardinal. Then the free Boolean algebra with κ generators fails the strong \aleph_0 -selection property.

Preservation result

Theorem

Let \mathbb{B} be a κ -Corson Boolean algebra, where $\kappa > \aleph_0$ is regular. Then every subalgebra of \mathbb{B} is κ -Corson.

< 🗇 🕨

About the proofs

Definition

The pointwise topology τ_p on a Boolean algebra \mathbb{B} is the topology generated by sets of the form

$$V_p^+ = \{ a \in \mathbb{B} : a \in p \}$$
 and $V_p^- = \{ a \in \mathbb{B} : a \notin p \}$

where $p \in Ult(\mathbb{B})$.

Theorem

Let \mathbb{B} be a κ -Corson Boolean algebra, where $\kappa = \operatorname{cf} \kappa > \aleph_0$. Then every open cover of $\langle \mathbb{B}, \tau_p \rangle$ contains a subcover of size $< \kappa$.

3

・ロト ・ 四ト ・ ヨト ・ ヨト

About the proofs

Definition

The pointwise topology τ_p on a Boolean algebra \mathbb{B} is the topology generated by sets of the form

$$V_p^+ = \{ a \in \mathbb{B} \colon a \in p \}$$
 and $V_p^- = \{ a \in \mathbb{B} \colon a \notin p \}$

where $p \in Ult(\mathbb{B})$.

Theorem

Let \mathbb{B} be a κ -Corson Boolean algebra, where $\kappa = \operatorname{cf} \kappa > \aleph_0$. Then every open cover of $\langle \mathbb{B}, \tau_p \rangle$ contains a subcover of size $< \kappa$.

3

Lemma

Let \mathbb{B} be an infinite poset Boolean algebra. Then $\langle \mathbb{B}, \tau_p \rangle$ contains a closed discrete set of cardinality $|\mathbb{B}|$.

Remark

Nakhmanson (1985) proved that the Lindelöf number of $C_p(K)$ is κ whenever K is a compact linearly ordered space of weight $\kappa \ge \aleph_0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

Let \mathbb{B} be an infinite poset Boolean algebra. Then $\langle \mathbb{B}, \tau_p \rangle$ contains a closed discrete set of cardinality $|\mathbb{B}|$.

Remark

Nakhmanson (1985) proved that the Lindelöf number of $C_p(K)$ is κ whenever K is a compact linearly ordered space of weight $\kappa \ge \aleph_0$.

Elementary submodels

Definition

Let $\theta > \kappa > \aleph_0$ be regular cardinals. An elementary submodel *M* of $\langle H(\theta), \in \rangle$ is κ -stable if $M \cap \kappa$ is an initial segment of κ .

Fact

Given $A \in H(\theta)$ with $|A| < \kappa$, one can always find a κ -stable $M \preceq H(\theta)$ such that $A \in M$ and $|M| < \kappa$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Elementary submodels

Definition

Let $\theta > \kappa > \aleph_0$ be regular cardinals. An elementary submodel *M* of $\langle H(\theta), \in \rangle$ is κ -stable if $M \cap \kappa$ is an initial segment of κ .

Fact

Given $A \in H(\theta)$ with $|A| < \kappa$, one can always find a κ -stable $M \preceq H(\theta)$ such that $A \in M$ and $|M| < \kappa$.

3

Crucial Lemma, going back to Bandlow \approx 1990

Let \mathbb{B} be a Boolean algebra, $\kappa = \operatorname{cf} \kappa > \aleph_0$. Then \mathbb{B} is κ -Corson iff for every sufficiently closed κ -stable elementary submodel M of a big enough $H(\theta)$ there is a "canonical" projection

 $P_M \colon \mathbb{B} \to \mathbb{B} \cap M.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

≌⊡∞ [™]····· ≤ THE END

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・